GOWIN’S KNOWLEDGE VEE: USING TO IMPROVE
PRESERVICE TEACHERS ABILITY FOR CONDUCTING
AND DIRECTING SCIENCE INVESTIGATIONS
Piyush Swami,
Robert Shields,
Abstract
Gowin’s
Knowledge Vee, a constructivist heuristic, was introduced to undergraduates
enrolled in two introductory biology courses at a community college in
Our study suggests the Vee can be
used to assist undergraduates to learn science and science education. Moreover, the students, none of whom were
science majors, showed a willingness to try a heuristic they had never before
used, a facility to use it and sufficient positive experience to consider using
it in their future course work. Given
even this limited experience, we believe that the Vee can be employed in the
undergraduate classroom and, in turn, K-12 classrooms.
The Constructivist Theory of
Learning
Whether classic
behavior modification or cognitive behavior modification, the classroom has
been teacher centered with students treated as passive receivers and learning
considered to be a stepwise process. At
the same time that behaviorism was employed as the primary teaching process
other research was beginning to point to learning as a constructed
process. In fact, the development of the
concept of learning as a constructed process is itself a construction which
can, at the least, be traced back to Piaget and Inhelder. Piaget’s concept of cognitive development,
assimilation and accommodation in particular, evolved through the work of
others so that today there is a more complete picture of how we learn.
Vygotsky
introduced the role of social interaction in cognitive development while Bruner
proposed that learning is an active process in which learners construct new
ideas or concepts based upon their current and past knowledge. The cognitive structure is a schema or mental
model which provides meaning and organization to experiences and can assist the
learner to go beyond the information given.
As with Vygotsky, Bruner saw education as a social and interactive
process in which the goal was to assist students with their cognitive
development rather than a reception process in which they were presented facts
to memorize without a well established, if it was at all, context.
Subsumption,
according to Ausubel, is the primary process of learning in which new material
is related to similar material already existing in the cognitive structure in a
substantive and non-verbatim basis. To
facilitate cognitive development, Ausubel (1963) recommended the use of the
advanced organizer. Advanced organizers
are:
“. . . introduced in advance of learning itself, and are
also presented at a
higher level of abstraction,
generality, and inclusiveness; and since the
substantive content of a given organizer or series of organizers is selected
on the basis of its suitability for explaining, integrating,
and interrelating
the material they precede,
this strategy simultaneously satisfies the
substantive as well as the
programming criteria for enhancing the
organization strength of
cognitive structure.” (1963, p. 81).
With
the work of Piaget and Inhelder (Gallagher & Reid, 1981), Vygotsky (1978),
Bruner (DeBoer 1991) and Ausubel (1963), constructivist learning can be seen as
a process in which the student assimilates and accommodates new knowledge and
experiences in the context of the prior knowledge and experiences and creates a
new and personal or idiosyncratic understanding.
Until 1984
constructivism in education was a theory for which there did not yet exist
methodologies by which it could be applied in the classroom. Novak and Gowin (1984) introduced two
constructivist heuristics: the concept
map which is a tool for helping students to understand the meaning of
knowledge, and the knowledge Vee diagram, a tool to help students understand
the structure as well as meaning of knowledge.
The Knowledge Vee, also referred to as Gowin’s Vee, is the heuristic
which may assist students in understanding science literature as well as
laboratory experiences.
Gowin’s Knowledge Vee
Concerned with
the apparent inability of students in science laboratories to place their work
in a larger context, Gowin began in the 1970s to develop a process that would
help students make those crucial learning connections. Students were, and still are, familiar with
“shake and bake” laboratory experiences which, upon completion, normally
require the submission of a laboratory report.
Gowin, as have many science educators, noted that students could easily
identify the materials and methods they used and the results they achieved;
they could not explain how their results were connected to an underlying theory
nor could they generalize their results.
In short, they had disconnected information which, in that form, was of
no learning value. The students were not
able to explain the meanings of their results yet “. . . meaning must be
constructed, and we must show how all elements interact when we construct new
meanings.” (Novak & Gowin, 1984, p.
56). Novak (1990, p. 31) described the
Vee as a heuristic representing the “. . . constructivist view of knowledge and
illustrat(ing) the . . . epistemological elements that interact in the process
of new knowledge construction.”
The Vee heuristic
was developed to illuminate the structure of, as well as help students
construct, knowledge. It emphasizes the
structure of, and interplay between, the theoretical and methodological
dimensions of knowledge. Gowin’s Vee,
which evolved over more than 15 years (Gowin, 1970, 1981), had in its original
configuration 16 epistemological elements which, in practice, has been reduced
to
The left or
conceptual side of Vee (Figure 1) is composed of philosophies, theories,
principles and concepts; those constructs that provide the foundation or
context for further learning.
Philosophy, although we don’t often think of it in everyday science or
science education, underlies all that we do.
Gowin described philosophy as the belief about the nature of knowledge
and knowing which guide inquiry. As this
is so broad and science laboratories are usually limited in scope, philosophy
is usually not used in a Vee applied to a laboratory. Subordinate to philosophy is theory that is
described as “logically related sets of concept permitting patterns of
reasoning leading to explanations”
(Novak & Gowin, 1984, p. 56).
Note that the description in Figure 1 differs from that here; this is
done to provide for a wider understanding of that concept. Theories such as that of the diversity of
life, cyclogenesis and photosynthesis are usually presented in discussion or
lecture sections of a class and are thus included usually as the highest
conceptual level in a student’s Vee as noted in Figure 1. Theories contain one or more principles or
constructs which are “ideas which support reliable theory, but without direct
referents in events or objects” (Novak & Gowin, 1984, p. 56). They, in turn are supported by concepts which
Gowin describes as “signs or symbols signifying regularities in events and
shared socially.” (Novak & Gowin, 1984, p. 56) It is the conceptual side which provides the
meaning of, and foundation for, the methodology and is also the side which as
been traditionally overlooked by both students as well as some teachers.
Figure 1. Gowin’s Knowledge Vee (after Novak and Gowin,
1984)
Conceptual Methodological
Philosophy: Interaction Value Claims:
The beliefs about the The
worth or value of nature of knowledge the
inquiry
and
knowing guiding the
inquiry Focus Knowledge Claims:
Question Answers to the focus
Theory: question(s)
- reasonable
The
general Principles guiding interpretations
of the records
the
Inquiry that explain why and
transformed records/data
events
or objects what is
observed Transformations:
Reorganized, rearranged
Constructs: records
more manageable &
Ideas
showing specific relation- meaningful representation of the
ships
between concepts, without event – tables, graphs etc.
direct
origin in events or objects
Concepts: Raw data:
Perceived
regularity in events or objects The observation(s) made and recorded
(or
records of events or objects) from the events/objects studied
designated
by a label.
Events & Objects: Description of the event(s) and/or object(s)
to be studied in order to answer the focus question.
The focus question in the center of the Vee is based on the conceptual side and must clearly address an issue specific to the left side. The apex, especially, points to the events and objects which “. . . are at the root of all knowledge production . . .” (Novak & Gowin, 1984 p. 57). Events and objects are the activities and materials which comprise the normal laboratory experience and have as their immediate foundation the focus question. Although not stated explicitly, Gowin chose to use events and objects in lieu of “materials and methods” to insure that those epistemological elements would not be confused with same named elements of the positivists’ scientific method. Moving up the right side are the results of the events and objects, first of which is the record or specific results of the experience. They in turn can be transformed to a more useable format such as graphs or statistical analyses which in turn can be used to create knowledge claims in which new generalizations answer the focus question. At the top of the methodological side, and supported by the elements below it, are the value claims which identify the worth of the knowledge claims or place them in the context of the underlying theory. Such worth in the context of the underlying theory is the purpose of Kuhn’s (1970) “normal science”. Note the “interaction” arrow connecting the conceptual and methodological sides; it is this which calls to the attention of the student and teacher the connections between knowing and doing. If a laboratory is constructed well the focus question is clearly based on the conceptual side, and the methodological side both answers the focus question and adds more understanding to the conceptual side. The Vee functions in helping students see the interactions between theory, methods and results. In its use, the Vee functions much like an advanced organizer in that it enhances the organization strength of the cognitive structure.
Gowin’s Vee in
the Laboratory
Novak and Gowin
contended that the Vee heuristic is a useful constructivist tool and field
studies by others support their contention.
In keeping with the purpose for which the Vee was originally developed
Gurley-Dilger (1992), in one of the earliest articles on the Vee, used it in a
high school laboratory by having her students fill in the conceptual side
before a laboratory experience and then completing the methodological side
following the experience. The completed
Vee served as their laboratory reports and were easier for the teacher to
respond to than the traditional laboratory report. She reported that they learned better in
that they could not only see the interaction between the two sides, prior and
new or constructed knowledge, but the teacher could easily identify to them any
problems they appeared to have with that interaction. Her results were supported by other
studies: Qin (1997), Lebowitz (1998) and
Passmore (1998) also found the Vee to be effective in college science
laboratories. Novak (1984) also noted
that Gowin’s Vee had been tried with some success in elementary schools
although there is little in the literature on this. The limited number of articles and even fewer
dissertations concerning the Vee are primarily focused, as was Gurley-Dilger’s,
on the use of the Vee in science laboratory experiences.
Gowin’s Vee
Used With Preservice Teachers
If Gowin’s Vee is
to be used in the classroom it has to be introduced to students by their
teachers. Novak (1998) suggested a
method by which students can be introduced to and learn to use the Vee. His method has, however, yet to be tested as
the majority of Vee studies occurred prior to the publication of his 1998 book
and studies conducted subsequent to his book do not reference his method. That Novak choose to suggest a method
acknowledges its importance if the Vee is to find wider use in science
education.
Okebukola (1992)
found that preservice teachers of mathematics and science can learn to use the
Vee but find it difficult to teach students how to use it. Wandersee (1990) noted the same problem and
suggested that of the constructivist heuristics, the Vee was the most difficult
to use. Its difficulty notwithstanding,
teachers in Okebukola’s study did have a positive attitude towards using
Gowin’s Vee. Roth and Roychoudhury
(1993) found that preservice elementary teachers could learn to use the Vee,
they had a positive attitude towards its use and it helped them to “reflect on
the process of learning and teaching science” (p. 243). They also found that the Vee could be used in
collaborative situations. Nelson and
Epps (1996) also found that preservice elementary teachers could learn to use
the Vee and were willing to use it in laboratory investigations but, as found
in other studies, the students had difficulties with the higher order elements
such as value claims and principles.
Gowin’s Vee
Used for Analyses of Science Literature
Gowin suggested however (Novak & Gowin, 1984) that “Papers, texts, literary works, lectures, and other forms of exposition can be analyzed and critically evaluated using the Vee” (p. 117). The literature provides only one article (Stewart, 1997) which examines that use of Gowin’s Vee and thus there is a need to further examine Gowin’s contention.
With the belief,
based on available research, that Gowin’s Vee can be a very useful tool in the
science classroom and recognizing that there yet remains a dearth of research
concerning it, we engaged in a two pronged study of how to teach it as well as
determine, to a limited degree, its efficacy.
The results reported herein are preliminary and will serve as the basis
for future studies. Our primary
interests in these preliminary studies is to learn best how to help students
use it as well as learn how receptive students are to this heuristic to which
they had not been previously exposed.
With such knowledge further research on its efficacy will be less
influenced by the variable of teaching the tool. That said, we did take an non-rigorous look
at its efficacy.
In this study he
Vee was introduced to undergraduates enrolled in two introductory biology
courses at a community college in
Discussion
In the community
college introductory biology classes, students were required to read assigned
articles from science magazines and then write a paper which illustrated their
understanding of the topic as well as present a critique of the article. The treatment group prepared the required
narrative only after receiving instruction on the use of the Vee and preparing
a Vee on their article. The control
group did not receive such instruction nor were they required to prepare a Vee
prior to writing their narrative. Both
groups were further assessed through the use of an exam essay based on yet
another science article.
This part of the
study utilized a static-group comparison, quasi-experimental design, (Table 1)
a design also referred to as pre-experimental (Newman, personal
communication). This design was chosen
as the participants could not be truly given random assignments to a treatment
or control group and that a posttest was administered to both group but no
pretests were used. Convenience sampling was
used to determine which class would be the control and which would be the
treatment group.
Table
1
The Static-Group Comparison Quasi-Experimental
Research Design
Action
prior to treatment
Treatment given Posttest
Treatment
Group - X O
Control
Group - - O
______________________________________________________________________________
Key:
- = no action taken
X = treatment administered
O = posttest administered
The hypothesis being tested
was: there is not any difference in the
quality of understanding of science article between students who have learned
and used Gowin’s Vee and those who have not as expressed in the form of a
written review and critique, and in the form of an examination essay
question.
Participants in
this study were students attending an
During the study
each group was assigned to read and respond to specific articles from first Science News and later Scientific American. Students in the treatment group received an
initial introduction to and instruction in the use of Gowin’s Vee for 80
minutes when they received their first writing assignment. Classroom instruction followed that
recommended by Novak (1998) and included an overview of the structure and use
of the Vee as well as examples of the Vee, developed by the instructor, as
applied to science articles. It should
be noted that examples of such a use of the Vee do not exist in the literature. In addition to the classroom instruction they
were given a four page handout which included a description of the Vee, a
sample of the Vee and a blank Vee for their use. The students in the control group received an
assignment that did not include information specific to the Vee. The students in the treatment group were
required to complete a Vee for their assigned article and submit it for
critique. Upon return of the Vee they
were allowed to discuss it among themselves but no further instruction or class
critique was provided as it was believed it would confound the results by
providing each student in the treatment group with, in essence, an instructor
developed Vee for the article. The Vees
were evaluated using the rubric developed by Gowin (Novak and Gowin, 1984, pp.
71-71). The reviews were assessed using
an instructor developed rubric.
Examination
essays were based on a specific article from Scientific American.
Students in the treatment group were encouraged but not required to
produce their own Vee for the essay article and to share their Vees and discuss
the articles prior to the exam. For both
groups the articles were provided a week before the exams.
The pre-service
teachers enrolled in a methods course received their introduction to the Vee
also using the method recommended by Novak (1998). An analysis of the efficacy of the heuristic
was not conducted in this part of the study.
The Vees produced by the preservice teachers were for laboratory exercises
and were evaluated using Gowin’s rubric (Novak and Gowin, 1984). At both the community college and the
research university students were asked to respond to a survey concerning their
perceptions of the Vee.
In the community
college part of the study there was a difference in the quality of the article
reviews and critiques and examination essays between the treatment and control
groups but the differences were not significant. The surveys indicate that most of the
students thought using the Vee for both articles was difficult but they would
be open to continue using it. This
finding is in agreement with Lebowitz’s (1998) findings. The students’ comments from this study also
support the continued use of the Vee and, again, are very similar to the
comments provided by the students in Lebowitz’s study. Some of the comments were:
“. . . it definitely made me grasp
the material.”
“I can also see myself using the V
in the future for my own
purposes/helping to get a paper
together.”
“I wouldn’t say it was amazing, but
it was helpful.”
The Vee was very helpful and a good
tool. At first it was very
confusing but then I got it.”
“It made me read the article more.”
“It helped me organize my info . . .
I will use Gowin's Vee in the future.”
Conclusion and
Recommendations
Although preliminary, this
study provides us first with support for the usefulness of the Vee, second, a
better understanding of the difficulties students found with the Vee and,
finally, it suggests the need for improvements to how we teach and evaluate the
tool.
Although there
was not a significant difference between the treatment and control groups in
the community college part of the study, that there was a difference suggests
the Vee may be useful. Certainly, in
their critiques of the Vee, the students opined that the Vee is useful. With a more critical review of Novak’s
methods for teaching the Vee and more practice at doing so we may more
effectively introduce Gowin’s Vee to students.
Of particular interest is the difficulty students have determining value
claims and theories, and to a lesser but still notable degree, knowledge claims
and principles/constructs; this is consistent with the findings by Nelson and
Epps (1996). They had few problems
identifying focus questions, events and objects, raw data and transformations
and, in spite of the problems identifying theories and value claims, they were
able to make the connection between the conceptual and methodological sides of
the Vee. In this, we agree with
Wandersee’s (1990) assessment that the Vee is difficult to use and Novak’s
contention that “. . . using the Vee requires significantly more training,
incubation time, and reorientation in the way most people think about knowledge
and knowledge creation.” (1998, p. 110).
Although not
conclusive, this study supports Gowin’s contention, and agrees with Stewart’s
(1998) conclusion, that the Vee can be useful for the analysis of science
articles. It also supports the studies
by Okebukola and Roth and Roychoudhury
that preservice teachers can develop a positive attitude towards the heuristic
and appreciate its usefulness in the constructivist classroom.
Another aspect of
effectively introducing the Vee to students is the rubric by which their Vees
are assessed. The only rubric developed
for evaluating student Vees was done so for use with middle school laboratories
and is not an effective tool for evaluating Vees developed for analysis of
science articles. Such a rubric needs to
and will be developed. The importance
for this rubric this lies in the focus on scientific literacy as the overarching
goal of science education. Science
articles can be used to supplement text books and, after students have
completed their formal science education, often become an important if not sole
source of science information. The
ability of students to understand articles in commercial and popular magazines
such as Scientific American, and the
ability of teachers to help students learn to effectively use such sources of
science information are critical to the development of a scientifically
literate citizenry.
As evidenced by
the paucity of literature on this heuristic, Gowin’s Vee has long been
overlooked as a tool to be used in the constructivist classroom. The literature which does exist and our
initial study suggest this is an oversight that does a disservice to students
studying science. Our initial study also
leads us to hope that Novak is not quite on the mark with his guess “. . . that
it will take 2 or 3 decades before the power and utility of using the Knowledge
Vee for knowledge capture and facilitation of thinking takes hold . . .” (1998,
p. 110). We believe that it need not,
nor should not, take that long.
References
Ausubel,
D.P. (1963). The psychology of meaningful verbal learning: An introduction to
school learning.
DeBoer,
G.E. (1991). A history of ideas in science education: Implications for practice.
Gallagher,
J.M., & Reid, D.K. (1981). The learning theory of Piaget &
Inhelder.
TX: Pro-Ed.
Gowin,
D.B. (1970). The structure of
knowledge. Educational Theory, 20 (4), 319-328.
Gowin,
D.B. (1981). Educating.
Gurley-Dilger,
L. (1992) Gowin’s Vee: Linking the
lecture and the laboratory. The
Science Teacher 59(3), 50-57.
Kuhn,
T. S. (1970). The structure of scientific revolutions (2nd ed).
Lebowitz,
S.J. (1998, April). Use of Vee maps in a college science laboratory. Paper
presented at the annual meeting of the National Association of
Research in
Science Teaching,
Nelson,
M. & Epps, N.V. (1996, January). An analysis of elementary majors’ pogress
with Vee diagramming. Paper presented as the annual meeting of the Association
for the Education of
Teachers of Science,
Novak,
J. D. (1977). A theory of education.
Novak,
J. D. (1990). Concept maps and Vee
diagrams: Two metacognitive tools to
facilitate meaningful learning.
Instructional Science. 19: 29-52.
Novak,
J.D. (1998) . Learning, creating, and using knowledge: Concept Maps as
facilitative tools in schools
and corporations.
Associates, Inc.
Novak,
J., & Gowin, D.B. (1984). Learning how to learn.
University Press.
Okebukola,
P.A. (1992). Attitude of teachers
towards concept mapping and Vee
diagramming as metalearning tools in science and mathematics. Educational
Research, 34, 201-213.
Passmore,
G.G. (1998). Using Vee Diagrams to
facilitate meaningful learning and
misconception remediation in radiologic technologies laboratory
education.
Radiologic Science &
Education, 4(1), 11-28.
Qin,
Y. (1997). An investigation of the effectiveness of the Vee heuristic for student
pre-
laboratory preparations in
chemistry. Unpublished doctoral dissertation, The
Roth,
W-M., & Roychoudhury, A. (1993).
Using Vee and concept maps in collaborative
settings: Elementary education majors construct meaning in
physical science
courses. School Science and Mathematics, 93,
237-244.
Stewart,
G. (1997). The use of Gowin’s Vee to improve post-graduate critical analysis of
research papers. Retrieved November 2, 2003 from http://www.hsb.baylor.edu/
ramsower/ais.ac.97/papers/stewart2.htm.
Vitgotsky,
L.D. (1978). Mind in Society.
Wandersee,
J.H. (1990). Concept mapping and the
cartography of cognition. Journal of
Research in Science Teaching, 27, 923-936.